Comparison of biological effects between continuous and intermittent exposure
to GSM-900-MHz mobile phone radiation: Detection of apoptotic
cell-death features
Evangelia D. Chavdoula, Dimitris J. Panagopoulos, Lukas H. Margaritis∗
Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
Reference
[1] H. Lai, N.P. Singh, Acute low-intensity microwave exposure increases DNA
single-strand breaks in rat brain cells, Bioelectromagnetics 16 (1995) 207–210.
[2]
H. Lai, N.P. Singh, Single- and double-strand DNA breaks in rat brain cells after
acute exposure to radiofrequency electromagnetic radiation, Int. J. Radiat. Biol.
69 (1996) 513–521.
[3] B.Z. Vijayalaxmi, M. Leal, T.J. Szilagyi, M.L. Prihoda, Meltz, Primary DNA damage
in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency
radiation, Radiat. Res. 153 (4) (2000) 479–486.
[4] L.G. Salford, A.E. Brun, J.L. Eberhardt, L. Marmgren, B.R. Persson, Nerve cell
damage in mammalian brain after exposure to microwaves from GSM mobile
phones, Environ. Health Perspect. 111 (2003) 881–883.
[5] M. Caraglia, M. Marra, F. Mancinelli, G. D’Ambrosio, R. Massa, A. Giordano, A.
Budillon, A. Abbruzzese, E. Bismuto, Electromagnetic fields at mobile phone
frequency induce apoptosis and inactivation of the multi-chaperone complex
in human epidermoid cancer cells, J. Cell. Physiol. 204 (2005) 539–548.
[6] E. Diem, C. Schwarz, F. Adlkofer, O. Jahn, H. Rudiger, Non-thermal DNA breakage
by mobile-phone radiation (1800 MHz) in human fibroblasts and in trans-
formed GFSH-R17 rat granulosa cells in vitro, Mutat. Res. 583 (2005) 178–183.
[7] I.Y. Belyaev, L. Hillert, M. Protopopova, C. Tamm, L.O. Malmgren, B.R. Persson, G.
Selivanova, M. Harms-Ringdahl, 915 MHz microwaves and 50 Hz magnetic field
affect chromatin conformation and 53BP1 foci in human lymphocytes from
hypersensitive and healthy persons, Bioelectromagnetics 26 (2005) 173–184.
[8] S. Lixia, K. Yao, W. Kaijun, L. Deqiang, H. Huajun, G. Xiangwei, W. Baohong, Z.
Wei, L. Jianling, W. Wei, Effects of 1.8 GHz radiofrequency field on DNA damage
and expression of heat shock protein 70 in human lens epithelial cells, Mutat.
Res. 602 (2006) 135–142.
[9] D.J. Panagopoulos, E.D. Chavdoula, I.P. Nezis, L.H. Margaritis, Cell death induced
by GSM 900 MHz and DCS 1800 MHz mobile telephony radiation, Mutat. Res.
626 (2007) 69–78.
[10] R.S. Malyapa, E.W. Ahern, W.L. Straube, E.G. Moros, W.F. Pickard, J.L. Roti Roti,
Measurement of DNA damage after exposure to 2450 MHz electromagnetic
radiation, Radiat. Res. 148 (1997) 608–617.
[11] R.S. Malyapa, E.W. Ahern, W.L. Straube, E.G. Moros, W.F. Pickard, J.L. Roti Roti,
Measurement of DNA damage after exposure to electromagnetic radiation in
the cellular phone communication frequency band (835.62 and 847.74 MHz),
Radiat. Res. 148 (1997) 618–627.
[12] R.S. Malyapa, E.W. Ahern, C. Bi, W.L. Straube, M. LaRegina, W.F. Pickard, J.L.
Roti Roti, DNA damage in rat brain cells after in vivo exposure to 2450 MHz
electromagnetic radiation and various methods of euthanasia, Radiat. Res. 149
(1998) 637–645.
[13] M. Capri, E. Scarcella, E. Bianchi, C. Fumelli, P. Mesirca, C. Agostini, D. Remon-
dini, J. Schuderer, N. Kuster, C. Franceschi, F. Bersani, 1800 MHz radiofrequency
(mobile phones, different Global System for Mobile communication modula-
tions) does not affect apoptosis and heat shock protein 70 level in peripheral
blood mononuclear cells from young and old donors, Int. J. Radiat. Biol. 80
(2004) 389–397.
[14] M. Capri, E. Scarcella, C. Fumelli, E. Bianchi, S. Salvioli, P. Mesirca, C. Agostini, A.
Antolini, A. Schiavoni, G. Castellani, F. Bersani, C. Franceschi, In vitro exposure
of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency:
studies of proliferation, apoptosis and mitochondrial membrane potential,
Radiat. Res. 162 (2004) 211–218.
[15] G.J. Hook, P. Zhang, I. Lagroye, L. Li, R. Higashikubo, E.G. Moros, W.L. Straube,
W.F. Pickard, J.D. Baty, J.L. Roti Roti, Measurement of DNA damage and apoptosis
in molt-4 cells after in vitro exposure to radiofrequency radiation, Radiat. Res.
161 (2004) 193–200.
[16] O. Zeni, M. Romano, A. Perrotta, M.B. Lioi, R. Barbieri, G. d’Ambrosio, R. Massa,
M.R. Scarfi, Evaluation of genotoxic effects in human peripheral blood leuko-
cytes following an acute in vitro exposure to 900 MHz radiofrequency fields,
Bioelectromagnetics 26 (2005) 258–265.
[17] I.Y. Belyaev, C.B. Koch, O. Terenius, K. Roxstrom-Lindquist, L.O. Malmgren, H.
Sommer, L.G. Salford, B.R. Persson, Exposure of rat brain to 915 MHz GSM
microwaves induces changes in gene expression but not double stranded DNA
breaks or effects on chromatin conformation, Bioelectromagnetics 27 (2006)
295–306.
[18] L. Verschaeve, Genetic effects of radiofrequency radiation (RFR), Toxicol. Appl.
Pharmacol. 207 (2005) 336–341, Review.
[19] G. Speit, P. Schütz, H. Hoffmann, Genotoxic effects of exposure to radiofre-
quency electromagnetic fields (RF-EMF) in cultured mammalian cells are not
independently reproducible, Mutat. Res. 626 (2007) 42–47.
[20] M.R. Scarfi, A. Sannino, A. Perrotta, M. Sarti, P. Mesirca, F. Bersani, Evaluation of
genotoxic effects in human fibroblasts after intermittent exposure to 50 Hz
electromagnetic fields: a confirmatory study, Radiat. Res. 164 (2005) 270–
276.
[21] V. Joubert, P. Leveque, M. Cueille, S. Bourthoumieu, C. Yardin, No apoptosis is
induced in rat cortical neurons exposed to GSM phone fields, Bioelectromag-
netics 28 (2007) 115–121.
[22] C. Ziemann, H. Brockmeyer, S.B. Reddy, T.J. Vijayalaxmi, N. Prihoda, T. Kuster, C.
Tillmann, Dasenbrock, Absence of genotoxic potential of 902 MHz (GSM) and
1747 MHz (DCS) wireless communication signals: in vivo two-year bioassay in
B6C3F1 mice, Int. J. Radiat. Biol. 85 (2009) 454–464.
[23] S. Pacini, M. Ruggiero, I. Sardi, S. Aterini, F. Gulisano, M. Gulisano, Exposure
to global system for mobile communication (GSM) cellular phone radiofre-
quency alters gene expression, proliferation, and morphology of human skin
fibroblasts, Oncol. Res. 13 (2002) 19–24.
[24] R. Nylund, D. Leszczynski, Proteomics analysis of human endothelial cell
line EA.hy926 after exposure to GSM 900 radiation, Proteomics 4 (2004)
1359–1365.
[25] R. Nylund, D. Leszczynski, Mobile phone radiation causes changes in gene and
protein expression in human endothelial cell lines and the response seems to
be genome- and proteome-dependent, Proteomics 6 (2006) 4769–4780.
[26] S. Kwee, P. Raskmark, S. Velizarov, Changes in cellular proteins due to environ-
mental non-ionizing radiation. I. Heat-shock proteins, Electro. Magnetobiol. 20
(2001) 141–152.
[27] J.M. Shallom, A.L. DiCarlo, D. Ko, L.M. Penafiel, A. Nakai, Microwave exposure
induces hsp70 and confers protection against hypoxia in chick embryos, J. Cell.
Biochem. 86 (2002) 490–496.
[28] K.S. Lee, J.S. Choi, S.Y. Hong, T.H. Son, K. Yu, Mobile phone electromagnetic
radiation activates MAPK signaling and regulates viability in Drosophila, Bio-
electromagnetics 29 (2008) 371–379.
[29] IuG. Grigor’ev, Biological effects of mobile phone electromagnetic field on chick
embryo (risk assessment using the mortality rate), Radiats. Biol. Radioecol. 43
(2003) 541–543.
[30] I.N. Magras, T.D. Xenos, RF radiation-induced changes in the prenatal develop-
ment of mice, Bioelectromagnetics 18 (1997) 455–461.
[31] D. Weisbrot, H. Lin, L. Ye, M. Blank, R. Goodman, Effects of mobile phone radi-
ation on reproduction and development in Drosophila melanogaster, J. Cell.
Biochem. 89 (2003) 48–55.
[32] D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-
MHz mobile phone radiation on the reproductive capacity of Drosophila
melanogaster, Electromagn. Biol. Med. 23 (2004) 29–43.
[33] D.J. Panagopoulos, E.D. Chavdoula, A. Karabarbounis, L.H. Margaritis, Compari-
son of bioactivity between GSM 900 MHz and DCS 1800 MHz mobile telephony
radiation, Electromagn. Biol. Med. 26 (2007) 33–44.
[34] V. Chauhan, S.S. Qutob, S. Lui, A. Mariampillai, P.V. Bellier, C.L. Yauk, G.R.
Douglas, A. Williams, J.P. McNamee, Analysis of gene expression in two human-
derived cell lines exposed in vitro to a 1.9 GHz pulse modulated radiofrequency
field, Proteomics 7 (2007) 3896–3905.
[35] T. Ono, Y. Saito, J. Komura, H. Ikehata, Y. Yarusawa, T. Nojima, K. Goukon, Y.
Ohba, J. Wang, O. Fujiwara, R. Sato, Absence of mutagenic effects of 2.45 GHz
radiofrequency exposure in spleen, liver, brain and testis of lacZ-transgenic
mouse exposed in utero, Tohoku J. Exp. Med. 202 (2004) 93–103.
[36] T. Kumlin, H. Iivonen, P. Miettinen, A. Juvonen, T. Van Groen, L. Puranen, R.
Pitkäaho, J. Juutilainen, H. Tanila, Mobile phone radiation and the developing
brain: behavioral and morphological effects in juvenile rats, Radiat. Res. 168
(2007) 471–479.
[37] S. Ivancsits, E. Diem, A. Pilger, H.W. Rudiger, O. Jahn, Induction of DNA strand
breaks by intermittent exposure to extremely-low-frequency electromagnetic
fields in human diploid fibroblasts, Mutat. Res. 519 (2002) 1–13.
[38] D.J. Panagopoulos, L.H. Margaritis, The effect of exposure duration on the bio-
logical activity of mobile telephony radiation, Mut. Res. 699 (2010) 17–22.
[39] D.J. Panagopoulos, L.H. Margaritis, Mobile telephony radiation effects on liv-
ing organisms, in: A.C. Harper, R.V. Burees (Eds.), Mobile Telephones, Network
Applications and Performance, Nova Science Publishers Inc., 2008, pp. 107–149,
Review.
[40] D.J. Panagopoulos, E.D. Chavdoula, L.H. Margaritis, Bioeffects of mobile tele-
phony radiation in relation to its intensity or distance from the antenna, Int. J.
Radiat. Biol. 86 (5) (2010) 345–357.
[41] D.J. Panagopoulos, L.H. Margaritis, The identification of an intensity “Window”
on the bioeffects of mobile telephony radiation, Int. J. Radiat. Biol. 86 (5) (2010)
358–366.
[42] T. Nikolova, J. Czyz, A. Rolletschek, P. Blyszczuk, J. Fuchs, G. Jovtchev, J. Schud-
erer, N. Kuster, A.M. Wobus, Electromagnetic fields affect transcript levels of
apoptosis-related genes in embryonic stem cell-derived neural progenitor cells,
ASEB J. 19 (2005) 1686–1688.
[43] R.C. King, Origin and development of the egg chamber within the adult ovar-
ioles, in: R.C. King (Ed.), Ovarian Development in Drosophila melanogaster,
Academic Press, New York London, 1970, pp. 38–54.
[44] L.H. Margaritis, Structure and physiology of the eggshell, in: L.I. Gilbert, G.A.
Kerkut (Eds.), Comprehensive Insect Biochemistry, Physiology and Pharmacol-
ogy, vol. 1, Pergammon, Oxford New York, 1985, pp. 151–230.
[45] L.H. Margaritis, The eggshell of Drosophila melanogaster. New staging charac-
teristics and fine structural analysis of choriogenesis, Can. J. Zool. 64 (1986)
2152–2175.
[46] A.C. Spradling, Developmental genetics of oogenesis, in: M. Bate, A. Martinez-
Arias (Eds.), The Development of Drosophila melanogaster, vol. I, Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, NY, 1993, pp. 1–70.
[47] D.N. Robinson, K. Kant, L. Cooley, Morphogenesis of Drosophila ovarian ring
canals, Development 120 (1994) 2015–2025.
[48] V. Cavaliere, C. Taddei, G. Gargiulo, Apoptosis of nurse cells at the late stages of
oogenesis of Drosophila melanogaster, Dev. Genes Evol. 208 (1998) 106–112.
[49] K. Foley, L. Cooley, Apoptosis in late stage Drosophila nurse cells does not require
genes within the H99 deficiency, Development 125 (1998) 1075–1082.
[50] K. McCall, H. Steller, Requirement for DCP-1 caspase during Drosophila oogen-
esis, Science 279 (1998) 230–234.
[51] I.P. Nezis, D.J. Stravopodis, I. Papassideri, M. Robert-Nicoud, L.H. Margaritis,
Stage-specific apoptotic patterns during Drosophila oogenesis, Eur. J. Cell. Biol.
79 (2000) 610–620.
[52] I.P. Nezis, D.J. Stravopodis, I. Papassideri, L.H. Margaritis, Actin cytoskeleton
reorganization of the apoptotic nurse cells during the late developmental stages
of oogenesis in Dacus oleae, Cell. Motil. Cytoskeleton 48 (2001) 224–233.[53] I.P. Nezis, D.J. Stravopodis, I. Papassideri, M. Robert-Nicoud, L.H. Margaritis,
The dynamics of apoptosis in the ovarian follicle cells during the late stages of
Drosophila oogenesis, Cell Tissue Res. 307 (2002) 401–409.
[54] K. McCall, Eggs over easy: cell death in the Drosophila ovary, Dev. Biol. 274
(2004) 3–14.
[55] ICNIRP, Guide lines for limiting exposure to time-varying electric, magnetic
and electromagnetic fields (up to 300 GHz), Health Phys. 74 (1998) 494–522.
[56] A.H.W. Nias, An Introduction to Radiobiology, 2nd ed., J. Wiley & sons, 1998.
[57] E.J. Hall, A.J. Giaccia, Radiobiology for the Radiologist, Lippincott Williams &
Wilkins, Philadelphia, 2006.
[58] D. Drummond-Barbosa, A.C. Spradling, Stem cells and their progeny respond
to nutritional changes during Drosophila oogenesis, Dev. Biol. 23 (2001) 265–
278.
[59] D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Filippetis, L.H. Margaritis,
A mechanism for action of oscillating electric fields on cells, Biochem. Biophys.
Res. Commun. 272 (2000) 634–640.
[60] D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Mechanism for action of
electromagnetic fields on cells, Biochem. Biophys. Res. Commun. 298 (2002)
95–102.
[61] D.J. Panagopoulos, L.H. Margaritis, Theoretical considerations for the biological
effects of electromagnetic fields, in: P. Stavroulakis (Ed.), Biological Effects of
Electromagnetic Fields, Springer, 2003, pp. 5–33.
[62] V. Joubert, S. Bourthoumieu, P. Leveque, C. Yardin, Apoptosis is induced by
radiofrequency fields through the caspase-independent mitochondrial path-
way in cortical neurons, Radiat. Res. 169 (2008) 38–45.
[63] J.F.R. Kerr, A.H. Wyllie, A.R. Currie, Apoptosis: a basic biological phenomenon
with wide-ranging implications in tissue kinetics, Br. J. Cancer 26 (1972)
239–257.
[64] J.C. Mills, N.L. Stone, R.N. Pittman, Extranuclear apoptosis. The role of the cyto-
plasm in the execution phase, J. Cell. Biol. 146 (1999) 703–708.